Hierarchical Adaptive Means (HAM) clustering for hardware-efficient, unsupervised and real-time spike sorting.

نویسندگان

  • Sivylla E Paraskevopoulou
  • Di Wu
  • Amir Eftekhar
  • Timothy G Constandinou
چکیده

This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 75-µW, 16-Channel Neural Spike-Sorting Processor With Unsupervised Clustering

Abstract We describe a neural spike-sorting processor that provides unsupervised clustering simultaneously for 16 channels. The use of a two-stage clustering algorithm, noise-tolerant distance metric, and selectively clocked high-VT register arrays makes online clustering feasible for implementation. The spike-sorting processor has a power consumption of 75μW at 270mV and an area of 2.45mm in a...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

Efficient Architecture for Spike Sorting in Reconfigurable Hardware

This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clust...

متن کامل

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio (SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2014